Improved Initialization of the Accelerated and Robust Qr-like Polynomial Root-finding
نویسنده
چکیده
We approximate polynomial roots numerically as the eigenvalues of a unitary diagonal plus rank-one matrix. We rely on our earlier adaptation of the algorithm, which exploits the semiseparable matrix structure to approximate the eigenvalues in a fast and robust way, but we substantially improve the performance of the resulting algorithm at the initial stage, as confirmed by our numerical tests.
منابع مشابه
New progress in real and complex polynomial root-finding
Matrix methods are increasingly popular for polynomial root-finding. The idea is to approximate the roots as the eigenvalues of the companion or generalized companion matrix associated with an input polynomial. The algorithms also solve secular equation. QR algorithm is the most customary method for eigen-solving, but we explore the inverse Rayleigh quotient iteration instead, which turns out t...
متن کاملART-UP: A Novel Method for Generating Scanning-robust Aesthetic QR codes
QR codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this paper, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probabi...
متن کاملRational and radical fixed point functions for the eigenvalue problem and polynomials
The derivation and implementation of many algorithms in signal/image processing and control involve some form of polynomial root-finding and/or matrix eigendecomposition. In this paper, higher order fixed point functions in rational and/or radical forms are developed. This set of iterations can be considered as extensions of known methods such as Newton’s, Lagurre’s and Halley’s methods and can...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملCanonical polyadic decomposition of third-order semi-nonnegative semi-symmetric tensors using LU and QR matrix factorizations
Semi-symmetric three-way arrays are essential tools in blind source separation (BSS) particularly in independent component analysis (ICA). These arrays can be built by resorting to higher order statistics of the data. The canonical polyadic (CP) decomposition of such semi-symmetric three-way arrays allows us to identify the so-called mixing matrix, which contains the information about the inten...
متن کامل